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1.  INTRODUCTION     
 

Analyses of surface-based meteorological ob-
servations have many uses.  Such analyses are 
part of the assessment of the synoptic situation 
necessary for weather forecasting; this is as true 
today as it was 60 years ago.  The methods of 
analyses have, however, changed since then.  In 
the mid 1950's, data were being plotted by hand on 
maps and the analyses performed by humans.  
Since then, various methods of automated analyses 
have been developed in concert with the develop-
ment of the digital computer. 
 

One of the first techniques to appear was the 
least squares fitting of a polynomial over a fairly 
large area to the data (Panofsky 1949).  Although 
this was refined by Gilchrist and Cressman (1954) 
to fit the data over a small area and was actually 
used in early numerical weather prediction ex-
periments, it never became widely used.  George 
Cressman, the first director of the National Mete-
orological Center (now the National Centers for 
Environmental Prediction, NCEP) and then director 
of its forerunner the Joint Numerical Weather Pre-
diction Unit, recognized the potential for a technique 
developed by Bergthorsson and Doos (1955), and 
put a version of that into operation for analyzing 
upper air heights (Cressman 1959).  This succes-
sive correction technique consisted of making mul-
tiple passes over the data, correcting each grid 
point on each pass by the data in the immediate 
vicinity.  A very similar technique, basically differing 
only in the distance weighting factor, was proposed 
by Barnes (1964) and has been used extensively.  
Other very sophisticated methods of analysis, now 
called data assimilation, have been developed and 
are in operation at National Centers worldwide for 
providing initial conditions for numerical models.  
These latter methods employ relationships among 
free atmospheric variables that are not usually ef-
fective for use with surface observations. 
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As part of the Meteorological Development 

Laboratory’s support to the aviation community, and 
the Next Generation Air Traffic Control System 
(NextGen) in particular, we have further developed 
the successive correction method, and have called 
it the BCDG method, the initials of the names of the 
primary developers. This method has been de-
scribed by Glahn et al. (2009) for the analysis of 
MOS forecasts and by Im et al. (2010) for the 
analysis of surface data.  While a considerable 
amount of effort has been placed on analysis 
methods, a more modest effort has been on esti-
mating the analysis error associated with a par-
ticular method.  Characteristically, errors associ-
ated with analysis schemes have been estimated 
with idealized data (e.g., a combination of sinusoi-
dal waves) and/or upper air data where the patterns 
are relatively smooth.  Barnes (1964) method is 
characteristically used with one or two passes.  He 
suggested (op. cit.) “...direct application of the 
scheme to obtain maximum detail in regions 
wherein the data densities vary considerably is not 
recommended.”  Achtemeier (1989) suggested 
Barnes scheme be extended to three passes.  Dif-
ficulties in making a good analysis and a good es-
timate of its error are evident by the exchanges 
between Smith and Leslie (1984) and Glahn (1987), 
Goodin et al. (1979, 1981) and Glahn (1981), and 
Fritsch (1971) and Glahn and McDonell (1971). 
 

If one is going to estimate “analysis error,” that 
error needs to be defined.  One could be very in-
terested in the location of fronts or other disconti-
nuities, and not be overly concerned about “bland” 
areas.  If such were the case, then a method would 
need to be defined that concentrated on that aspect.  
If one is concerned about making derivative calcu-
lations, then the method proposed by Achtemeier 
(1989) would be an option.  Our use of the term 
“analysis error” is defined as a measure of the in-
ability to recover the data values on which the 
analysis is based from the gridded analysis by linear 
interpolation anywhere within the extent of the grid.  
The measure used is absolute error (AE). 
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For an analysis algorithm such as BCDG, one 
can think of different ways of making such an es-
timate of the error.  The simplest one is to interpo-
late into the completed analysis grid and compute 
the error at each data point.  The average of these 
errors would be an overall measure of error.  This 
has two undesirable attributes.  First, the interpo-
lated value itself has potential error.  If the gridpoint 
representation of the data were perfect, one would 
still not, in general, recover the value at the data 
point exactly by interpolation.  That is, the analysis 
process is not reversible.  However, interpolation 
from a regularly-spaced grid to a random point is 
more exact than interpolating from randomly 
spaced points to a regular grid, especially when the 
data density is uneven and/or sparse; this error of 
interpolation is unavoidable, although one could 
adjust the interpolation method based on the rela-
tive densities of the grid points and the data points.  
The second, and major, difficulty is that any analysis 
process worth its salt can fit the data points rather 
closely, but still be poor where the data are sparse. 
  

To attempt to overcome the second difficulty, 
one could withhold a few data points when doing the 
analysis, then compute the AE only at those points.  
Then, the analysis would not be affected by the 
withheld points, and the AE should be a measure of 
the overall error at points on the grid between grid 
points where there were no data values.  While the 
analysis is deprived of those withheld data, this is 
acceptable provided the number of withheld points 
is a very small fraction of the total points.  With-
holding data for error estimation was used as early 
as 1962 by Thomasell (1962).  By replication with 
the same data, withholding different sets of points, 
one can estimate the mean absolute error (MAE) 
for a particular set of data.  By performing analyses 
on many sets of data, with or without replication, 
one can estimate the MAE over that sample.  But 
note that this is an overall error, and says nothing 
about the distribution of errors over the grid and its 
underlaying terrain. 
 

Forecasters who ask about analysis errors are 
usually concerned about their specific area of in-
terest, which may be rugged or not, be near water 
bodies or not, or be in sparse data regions or not.  In 
this paper, we describe a method we developed to 
give an error estimate at specific grid points for 
each analysis and demonstrate it for surface tem-
perature and dewpoint. 

 
 
 
 

2.  REGIONAL ERROR DEPENDENCIES 
 
What is it that might cause analysis errors?  

Some prime candidates are discussed below. 
 
2.1  Data Density 
 

Obviously, if there are many data points relative 
to the spacing of the grid, the analysis will be better 
than if the data points are more sparse. 
 
2.2  Data Variability 
 

When data values are very nearly the same 
over some small region, say within a few gridlengths 
at most, then a grid point value should represent 
them very well, they should be highly recoverable, 
and the analysis error would be low.  On the other 
hand, when there is high variability, one would not 
expect any particular value to be recoverable to a 
high degree of accuracy. 
  
2.3  Roughness of Terrain 
 

The values of most surface variables are in-
fluenced by the height of the terrain.  For some 
variables, the affect of terrain can be anticipated.  
For instance, the observed temperature usually, but 
not always, decreases with altitude of the observing 
point within a local area.  However, while the terrain 
may be a factor, its affect is not easy to anticipate 
for some variables.  For example, cloud height 
above ground may well decrease with elevation in 
some restricted area, but cloud height of zero at an 
observing site may abruptly change to no clouds 
(clear or unlimited cloud height) above a certain 
elevation within the same local area. 
 
2.4  Land Use 
 

Land use may also affect analysis errors.  For 
instance, as one goes from a grassy location to a 
sandy or rocky one, the value of the variable may 
well change. 
 
2.5   Land/Water Differences 
 

In addition to there being no terrain roughness 
over significant water bodies, the different surface 
itself may cause a difference in the analysis error. 
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2.6  Synoptic Situation 
 

While the atmospheric stability and wind flow 
characteristics can undoubtedly affect analysis 
error, most of these affects should be captured in 
the data variability. 
 
3.  ERROR ESTIMATION PROCEDURE 
 

As explained above, a mean error over a whole 
analysis area for a particular date and time can be 
obtained by withholding a few stations and repli-
cating the analysis with different withheld stations.  
And, an average error over many dates and times 
can be obtained in the same way, perhaps without 
replication.  But how does one get an estimate of 
analysis error for a particular date and time that 
varies realistically regionally, and do it efficiently in 
real time? 
 

The approach we have taken is to develop two 
regression equations for each weather element 
(here, 2-m temperature and dewpoint), one for land 
locations and one for water, in which the predictors 
(independent variables) are functions of known data 
or constants, and the predictand (dependent vari-
able) is the analysis error.  To develop the regres-
sion equation, we have to compute the predictors 
and the predictand over a sample of sufficient size 
to yield stable equations. 
 
3.1  Computation of Predictand 
 

The predictand, the (absolute) error estimates 
at particular locations, is computed by making 
analyses over a large data set, randomly withhold-
ing a few stations from each analysis, and finding 
the absolute difference between the withheld sta-
tion’s value and the value interpolated from the 
analysis.  This gives an AE at each withheld data 
point for each analysis.    Specifically, we withheld 
20 land stations per analysis and 1 water station, 
the latter from either ocean or Great Lakes buoys, 
or observing points judged to be more representa-
tive of a water location than land (see Im et al. 2010).  
The total number of land stations per analysis was 
on the order of 10,000, so the percentage withheld 
was about 0.2 percent.  The total number of water 
points was on the order of 300 for temperature and 
200 for dewpoint, so the percentage of withheld 
points was about 0.3 and 0.5 percent, respectively.  
Our sample consisted of all hours of the day for all 
days within a 5.5 month period June 3 to November 
17, 2009. 
 
 

3.2  Computation of Predictors 
 

Nineteen potential predictors were computed 
for each withheld station, which incorporate data 
density, data variability, and terrain roughness.  
They are as follows: 

 
 Data Density 
  1. The distance to the closest station within 

55 gridlengths. 
  2. The distance to the 2nd closest station 

within 55 gridlengths. 
 
 Data Variability 
  3. The data variability within a radius of 55 

gridlengths of the station.  Data variability 
is defined as the mean absolute difference 
between the data values and their mean.  
The withheld value itself is not included in 
the calculation. 

  4. Same as 3, except within 45 gridlengths. 
  5. Same as 3, except within 35 gridlengths. 
  6. Same as 3, except within 27 gridlengths. 
  7. Same as 3, except the vertical change 

with elevation (VCE) between the withheld 
and the other stations is applied (see 
Glahn et al. 2009 for a description of 
VCE). 

  8. Same as 7, except within 45 gridlengths. 
  9. Same as 7, except the distance between 

stations is weighted quadratically by the 
same weighting function used in the 
analysis (see Glahn et al. 2009). 

 10. Same as 9, except within 45 gridlengths. 
 11. Same as 9, except within 35 gridlengths. 
 12. Same as 9, except within 27 gridlengths. 
 
 Terrain Roughness 
 13. Roughness calculated on the grid cen-

tered on the grid point closest to the sta-
tion within a radius of 8 gridlengths.  
Roughness is defined as the mean abso-
lute difference between the terrain heights 
at the grid points and their mean. 

 14. Same as 13, except within 4 gridlengths. 
 15. Same as 13, except within 2 gridlengths. 
 16. Same as 13, except within 1 gridlength. 
 
 Data Density and Roughness 
 17. Absolute difference in elevation between 

the withheld station and its closest 
neighbor. 

19 Product of 17 and 1. 
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 Data Variability, Roughness, and Data Den-
sity 

 18. Absolute difference between the withheld 
station value and the value estimated from 
the closest station after applying the VCE 
calculated at the closest station and the 
elevation difference between the two. 

  
For predictors 1-6, 9-12, and 18 dealing with 

gridlengths, the gridlengths quoted are for land; for 
water they are double those quoted.   

 
Note there is nothing dealing with land use.  We 

have not applied land use in any of the analysis 
procedures.  It is likely any variation caused by land 
use is very localized, and is of a smaller scale than 
the analysis gridlength.  Water/land differences are 
dealt with by having separate relationships for water 
and land.   
 
4.  RESULTS 
 

Five and a half months of data have been 
processed, and a regression equation obtained by 
screening for land and for water.  The screening 
process consists of choosing predictors in order 
according to their additional reduction of variance 
(RV) of the predictand (Lubin and Summerfield 

1951).  The development sample size for land was 
69,100 and 3,455 for water.  The values should be 
reasonably independent, at least spatially, and fur-
nish stable equations, especially for a small number 
of predictors. 
 

It became apparent that the best predictor by 
far is No. 18, which is the difference between the 
withheld station value and an estimate of it provided 
by its closest neighbor.  This estimate includes the 
VCE procedure used in the analysis, which defaults 
to zero over water.  No. 18 was selected first for all 
four equations and proved the bulk of the total RV. 
 
4.1  Land 
 

The means, standard deviations, and correla-
tions with the predictand are given in Table 1 for 
temperature and dewpoint over land; Table 2 is the 
same, except for over water.  Of these, with a 0.001 
cutoff for additional RV, three predictors were 
chosen in order 18, 16, and 4 for temperature and 
18, 5, and 15 for dewpoint.  For temperature, the 
total RV was 0.505–about half the total vari-
ance--and the standard error was 2.36°F.  For 
dewpoint, the total RV was a little less, 0.457, and 
the standard error was 2.50°F. 

 
 

Table 1.  The variable means and standard deviations in °F, and correlations with the predictand for tem-
perature and dewpoint over land. 
 
Variable No.   Temperature    Dewpoint  
(See above)    Mean Std. Dev. Correlation Mean Std. Dev. Correlation 

1  4.20 3.36 0.055 4.54 3.62 0.049 
2  6.30 3.89 0.051 6.76 4.08 0.051 
3  4.57 2.21 0.182 4.38 2.05 0.235 
4  4.30 2.16 0.192 4.06 1.95 0.245 
5  3.97 2.11 0.202 3.71 1.84 0.256 
6  3.67 2.09 0.202 3.40 1.77 0.258 
7  3.35 1.75 0.170 3.51 1.73 0.215 
8  3.04 1.54 0.187 3.22 1.60 0.227 
9  1.18 0.64 0.174 1.24 0.65 0.215 
10  1.07 0.57 0.187 1.14 0.60 0.218 
11  0.97 0.53 0.192 1.04 0.55 0.218 
12  0.90 0.53 0.185 0.97 0.55 0.209 
13  104.04 113.31 0.184 104.63 114.03 0.167 
14  77.62 93.99 0.189 77.09 93.48 0.168 
15  54.36 71.81 0.192 53.20 70.20 0.160 
16  39.41 56.43 0.191 38.41 55.21 0.149 
17  129.88 231.03 0.180 126.20 225.08 0.136 
18  2.97 4.13 0.703 3.36 4.24 0.664 
19  660.11 1477.49 0.146 747.41 1789.39 0.117 

Predictand  2.50 3.35 2.77 3.39  
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Table 2.  Similar to Table 1 for over water.  Predictors involving the lapse rate, Nos. 7 and 8, 13 through 17, 
and 19, do not exist over water because the elevation does not vary. 
 
Variable No.   Temperature    Dewpoint  
(See above)    Mean Std. Dev. Correlation  Mean Std. Dev. Correlation 

1  12.96 8.59 0.045  16.36 13.96 0.068 
2  18.21 10.60 0.025  26.98 20.51 0.067 
3  3.45 1.73 0.164  3.11 1.75 0.134 
4  3.22 1.72 0.172  2.91 1.73 0.167 
5  2.93 1.97 0.142  2.66 1.63 0.180 
6  2.63 1.82 0.166  2.39 1.59 0.175 
9  1.63 0.94 0.126  1.45 0.95 0.161 
10  1.47 0.92 0.135  1.13 0.93 0.157 
11  1.30 0.96 0.128  1.17 0.89 0.188 
12  1.16 0.95 0.135  1.07 0.91 0.196 
18  2.79 4.65 0.504  3.33 3.50 0.647 

Predictand  2.16 2.69   3.01 2.99  
 
 
Both coefficients and the mean and range of 

the variable itself have to be considered in as-
sessing the influence of a predictor on the error.  
From Table 3, we see that if all three predictors had 
a value of zero, not likely, but not impossible, the 
estimated temperature error would be only 0.35°F; 
this is the lower limit for the temperature error es-
timate.  If each predictor had its mean value, the 
error estimate would be 2.50°F.  If in addition, each 
predictor differed from its mean by one standard 
deviation in a positive direction, the error would be 
another 2.71°F, for a total of 5.21°F.  

 
For dewpoint (see Table 4), the minimum error 

estimate is 0.25°F, and the estimate if each pre-
dictor had its mean value is 2.77°F, not too dis-
similar from temperature.  Both temperature and 
dewpoint equations have a terrain term (No. 15 and 
16), a data variability term (Nos. 4 and 5), and        
No. 18, which embodies data density, roughness, 
and data variability.  
 
4.2  Water 
 

Over water, there was only one predictor kept 
for temperature, No. 18, and two for dewpoint,    
Nos. 18 and 2.  Screening actually selected three 
more for temperature, but the coefficient was 
negative for the second one.  The predictors were 
devised so that each one should contribute posi-
tively to the error estimate; a negative coefficient 
could easily give inconsistent results, even a nega-
tive absolute error. 
 

Tables 5 and 6 show that the minimum tem-
perature and dewpoint estimates are somewhat 

larger over water than over land, being 1.34 and 
0.90°F, respectively.  Data over water are much 
more sparse than over land, but the variability is 
less.  The effect of No. 18 is less for temperature 
than for dewpoint, likely because the data density 
for dewpoint is less than for temperature.  
 
5.  IMPLEMENTATION 
 

The equations were developed for sta-
tions–points where we had data.  To implement, we 
could compute the estimated error for a particular 
time at each station where there is data.  For in-
stance, for the temperature/land equation, we could 
compute the absolute difference between the sta-
tion’s value and the value estimated by the closest 
station, taking into account the VCE (predictor       
No. 18), compute the roughness (predictor No. 16), 
and compute the data variability (predictor No. 4).  
These values can be used with the equation     
constant and coefficients to compute the error.  
However, this does not give values on a grid–what 
we really want.  We could analyze these values with 
the BCDG analysis method, but that would give 
questionable error values in the same areas where 
we had a questionable analysis.  This doesn’t seem 
to be an acceptable solution. 

 
Alternatively, we can, with some reasonable 

assumptions, apply the equation at grid points.  We 
do it in the following manner.  Predictor No. 18 is 
calculated by finding the absolute value of the dif-
ference of the analysis value at a grid point and the 
value for that grid point estimated by the closest 
station, taking into account the VCE at the station.  
The roughness (predictor No. 16) can be calculated  
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Table 3.  The constant and coefficients, means, and standard deviations for the three predictor variables in 
the temperature equation over land, together with the predictor contributions to the total estimate.  Units are 
°F. 
 
Variable No.  Coefficient     Mean  Contribution          Std. Dev  Contribution 
(See above)  (Constant)  from Mean          (sd.)  from 1 sd. 

    and Constant    
Constant  0.3472  0.347    

18  0.5564 2.972  1.653 4.126  2.296 
16  0.0046 39.411  0.181 56.432  0.260 
 4  0.0733  4.298  0.315 2.163  0.158 

Total     2.497   2.714 
 
 
Table 4.  Same as Table 3 except for dewpoint equation. 
 
Variable No.  Coefficient     Mean  Contribution          Std. Dev  Contribution 
(See above)  (Constant)  from Mean          (sd.)  from 1 sd. 

    and Constant    
Constant  0.2498  0.250    

18  0.5112 3.363  1.719 4.236  2.165 
 5  0.1855 3.711  0.688 1.844  0.342 
15  0.0021 53.204  0.112 70.199  0.147 

Total    2.769   2.655 
 
 
Table 5.  The constant and the coefficient, mean, and standard deviation for the one variable in the tem-
perature equation over water, together with the predictor contributions to the total estimate.  Units are °F. 
 
Variable No.  Coefficient     Mean  Contribution          Std. Dev  Contribution 
(See above)  (Constant)  from Mean           (sd.)  from 1 sd. 
    and Constant    
Constant  1.3443  1.344    

18  0.2918 2.794  0.815 4.652  1.357 
Total    2.159   1.357 

 
 
Table 6.  Same as Table 5, except for the 2-predictor dewpoint equation. 
 
Variable No.  Coefficient     Mean  Contribution          Std. Dev  Contribution 
(See above)  (Constant)  from Mean           (sd.)  from 1 sd 

    and Constant    
Constant  0.9004  0.900    

18  0.5522 3.325  1.836 3.501  1.933 
 2  0.0101 26.980  0.272 20.515  0.207 

Total    3.008   2.140 
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at each grid point.  Also, the data density at the grid 
point can be calculated in the same manner it was 
calculated at stations in the development.   

 
Is implementation at grid points substantially 

different from implementation at stations?  The data 
density calculation should not suffer.  The number 
of stations within the specified radius (here, a sub-
stantial 55 gridlengths) will vary whether the calcu-
lation is at stations or at grid points.  The roughness 
calculation is done at grid points in development 
(see Table 1), so there is no difference there.  The 
major difference is for Predictor No. 18; in devel-
opment the value at the station was known (ob-
served), but in implementation the value is the 
analysis value.  
 

The fact that predictor No. 18 is calculated at 
grid points in implementation and at stations in 
development may cause a low bias in the estimates 
for grid points.  Given that the density of grid points, 
in our application, is greater than the density of 
stations, the distance between a station and its 
closest neighbor will be, in general, greater than the 
distance between a grid point and its closest station.  
This may tend to underestimate the value of pre-
dictor No. 18, and the error at grid points, compared 
to errors calculated at stations.  
 

Temperature and dewpoint analyses are shown 
in Figs. 1 and 3 (see also Im et al. 2010) and the 
corresponding error maps in Figs. 2 and 4.  The 
error maps show many errors in the eastern and 
central part of the U.S. are < 1.0°F, as might be 
expected from Table 3, and only isolated spots 
where the errors are > 4.0°F.  In areas where the 
terrain is flat (terrain not shown), the larger errors 
are undoubtedly due to greater data variability.  
Examples of correspondence between the analysis 
“detail” and error can be found.  For instance, for 
temperature in extreme eastern Texas, tempera-
tures of 70 to 80°F poke into an area more generally 
~ 90°F.  This shows up as spots and a crescent on 
the error map.  For dewpoint, a spot in southwest-
ern Indiana shows up. 
 

The largest temperature errors, for these 
analyses, are along the western seacoast and the 
nearby mountains.  There is a sharp temperature 
contrast near the coast.  Data are fairly dense, but 
the roughness is pronounced and the data variabil-
ity is high.  On the other hand, the largest dewpoint 
errors are associated with terrain in the West and 
the error along the coast is not particularly high, 
indicating the less variable dewpoint there.  The 
high dewpoint errors in high terrain, as compared to 

temperature, is likely due to the more consistent 
change of temperature with elevation than dew-
point. 

 
6.  DISCUSSION AND CONCLUSIONS 
 

A method to estimate the errors associated with 
the BCDG analysis of temperature and dewpoint 
has been developed and demonstrated.  It should 
be recognized, any estimate of analysis error is just 
that–an estimate.  The truth cannot be known (the 
values of the element being dealt with at each grid 
point) unless some data set is fabricated at both 
grid points (ground truth) and quasi-random points 
(data to analyze) with an analytic function.  This 
fabrication route has been taken in analysis studies 
(e.g., Smith and Leslie 1984 and Goodin et al. 1979), 
but it is difficult to devise an analytic function that 
simulates the real world with elevation differences, 
data with unknown errors, and data densities that 
are variable and reasonable. 
 

This method, which we call BCDGE (BCDG 
Error), furnishes an estimate of error which is 
physically reasonable, is specific to the data set 
being analyzed, and is relatively easy to implement.  
To emphasize a previous point, the “error” used in 
the development included the interpolation er-
ror–the estimate of the station value from the 
regularly spaced grid.  This itself, can be a consid-
erable cause for error, especially in the West.   It is 
also recognized that the development can be car-
ried out only for the elevations where there are 
stations.  For higher elevations, the estimated er-
rors are essentially extrapolations from stations at 
lower elevations with similar terrain roughness and 
data density.  This is also true of the analysis; the 
true values at high elevations are not known. 
 

The error maps look reasonable in terms of 
pattern, and also in terms of absolute value, al-
though there is no way to know how close the es-
timates really are.  It is believed these error maps 
will help pinpoint where the problems are with the 
associated analyses. 
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FIG. 1.  BCDG analysis of temperature (°F) produced for 0000 UTC 18 August 2009.  

 

FIG. 2.  Error estimation (°F) of the BCDG analysis for 0000 UTC 18 August 2009.  
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FIG. 3.  Same as Fig. 1 except for dewpoint. 

 

FIG. 4.  Same as Fig. 2 except for dewpoint.  
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